NAD+ 在细胞健康中的关键作用
NAD+ 是存在于我们体内每个细胞中的关键辅酶,包括心脏、大脑、肌肉和肺部的细胞。它将营养物质转化为能量,通过调节细胞功能驱动重要的代谢过程。通过将电子从一个分子转移到另一个分子,NAD+ 帮助我们在细胞内产生能量,并调节控制睡眠/觉醒周期的昼夜节律。

NAD+ 以两种关键方式支持代谢:首先,它促进营养物质转化为可用能量;其次,它作为辅酶,协助特定蛋白质调节重要的细胞过程。这些功能对于维持整体健康至关重要,有助于延缓衰老并降低多种疾病风险。
NAD+ 如何帮助您
NAD+ 可以直接和间接影响代谢通路、DNA 修复、细胞衰老及免疫细胞功能。这些细胞过程和功能对维持良好的身心健康、防病抗病以及健康老化至关重要。
NAD+ 水平下降可能引发认知功能衰退、癌症、代谢疾病及体弱。通过恢复 NAD+ 水平,许多与衰老相关的疾病可以减缓甚至逆转。因此,针对 NAD+ 代谢已成为延长健康寿命和生命跨度的潜在治疗策略。

身体机能表现
我们的个性化 NAD+ 方案专为满足您的独特需求而设计,无论您正面临职业生涯关键演讲、高强度训练或任何需要巅峰表现的挑战,都能助您保持最佳状态。
增强能量产生
NAD+ 对线粒体功能至关重要,支持细胞能量的最优生成和耐力。
改善思维清晰与专注力
NAD+ 优化可提升认知功能,增强注意力、记忆力及整体脑力表现。
提升运动表现
NAD+ 优化可改善肌肉功能、增加耐力并减少疲劳,从而提升运动表现。
提高韧性与耐力
NAD+ 支持细胞韧性,帮助应对高强度体力与脑力负荷,并促进更快恢复。

细胞长寿与抗衰机制
在 NADclinic,我们专注于通过个性化 NAD+ 方案,优化影响衰老与寿命的关键因素。体验 NAD+ 的力量,解锁更长久、更健康的人生奥秘。
增强细胞功能
NAD+ 补充支持线粒体功能,提升细胞能量生成,增强整体活力。
DNA 修复与维护
NAD+ 在 DNA 修复机制中发挥关键作用,有助于维持基因组稳定性并减少年龄相关损伤的积累。
改善代谢健康
NAD+ 优化可支持代谢功能,帮助调节葡萄糖和脂质代谢,这是延长寿命的关键因素。
增强抗压能力
NAD+ 补充可提升细胞应激反应,增强面对环境和氧化压力的韧性与寿命。

生殖与荷尔蒙平衡
我们的个性化疗法旨在帮助个人重拾性健康掌控力,在生命各阶段获得满足与自信。
激素平衡
NAD+ 在调节激素水平中发挥关键作用,促进内分泌系统平衡。
应对更年期与男性更年期
NAD+ 疗法提供自然有效的方法,缓解更年期和男性更年期相关症状,如潮热、情绪波动及性欲下降。
提升性欲
通过恢复细胞功能,NAD+ 可重燃激情与欲望,增强性欲并恢复亲密关系。
提升生育能力
NAD+ 促进细胞功能优化,可改善生殖健康,可能提高男女双方的生育能力。

睡眠调控与生物节律
昼夜节律是人体的生物时钟,约以24小时为一个循环。它调节睡眠–觉醒周期、褪黑素与皮质醇等激素分泌、体温变化及与消化和代谢相关的生理过程。
睡眠-觉醒周期
NAD+ plays a vital role in regulating your body’s natural sleep–wake rhythm, your internal biological clock that keeps you energised by day and restores you at night. By supporting the cellular processes that influence melatonin release, cortisol balance, and metabolic regulation, NAD+ helps synchronise your circadian rhythm for deeper, more restorative sleep.
激素释放(褪黑素、皮质醇)
NAD+ plays an essential role in regulating key hormones that shape your sleep, energy, and daily performance. By supporting the cellular pathways that influence melatonin and cortisol production, NAD+ helps maintain a healthy hormonal rhythm throughout the day.Melatonin, the hormone responsible for preparing your body for deep, restorative sleep, relies on balanced NAD+ levels for optimal release. Cortisol, your natural “wake-up” and stress-response hormone, also depends on NAD+ to stay in sync, ensuring you feel energised in the morning and calm as the day winds down.By harmonising these hormonal patterns, NAD+ promotes better sleep quality, steadier energy levels, and a more resilient stress response, helping you feel grounded and balanced from morning to night.
体温
Your body’s ability to maintain a stable temperature is essential for overall health, energy, and performance, and NAD+ plays a quiet yet powerful role in keeping this internal climate in balance.As a key regulator of cellular energy production, NAD+ helps fuel the metabolic processes that generate heat, allowing your body to adapt effortlessly to changes in your environment. Whether you’re cooling down for restful sleep or warming up for daily activity, NAD+ supports the smooth functioning of the systems that maintain thermal stability.By optimising cellular efficiency, NAD+ contributes to a more consistent and responsive temperature-regulation cycle, helping you feel comfortable, balanced, and at your best throughout the day and night.
消化与代谢
Healthy digestion and efficient metabolism are the foundation of energy, vitality, and long-term wellness and NAD+ plays a central role in both.As a key coenzyme in cellular energy production, NAD+ helps convert the nutrients you eat into usable fuel, supporting everything from digestive efficiency to metabolic balance. By optimising how your cells process carbohydrates, fats, and proteins, NAD+ promotes smoother digestion and a more stable, responsive metabolic system.Enhanced NAD+ levels can improve nutrient absorption, support healthy gut function, and help regulate metabolic pathways that influence weight, energy levels, and overall vitality. The result is a more balanced digestive system and a metabolism that works with you, not against you, keeping you energised, nourished, and performing at your best.

发肤与细胞修复
基于严谨研究和科学证据,NAD+ 是滋养并强化头发和肌肤的革命性解决方案,从内而外焕发年轻与光采。
改善肌肤健康
NAD+ 促进细胞再生与胶原蛋白生成,使肌肤更紧致、光滑并呈现年轻状态。
增强氧气流
Optimal oxygen flow is essential for energy, mental clarity, and peak physical performance and NAD+ plays a vital role in making it all possible.By supporting mitochondrial efficiency, NAD+ helps your cells use oxygen more effectively, improving the way your body converts oxygen into clean, sustainable energy. This enhanced cellular respiration means your tissues, muscles, and organs receive the oxygen they need to function at their highest level.
细胞再生
NAD+ 在细胞修复与再生中发挥关键作用,帮助皮肤细胞更新并提升整体肤质。
防脱发
NAD+ 补充可刺激毛囊健康,促进头发更浓密、强韧和健康生长,为脱发和稀疏问题提供自然有效的解决方案。

代谢优化与能量平衡
我们的方案精心设计,针对代谢功能失衡的根本机制,提供契合个人代谢特征的个性化干预。
糖尿病管理
NAD+ 优化支持葡萄糖代谢和胰岛素敏感性,有助于调节血糖水平并改善糖尿病患者的血糖控制。
肥胖
通过增强线粒体功能和促进脂肪代谢,NAD+ 补充有助于体重管理及减少肥胖相关并发症。
代谢综合征
NAD+ 补充可改善代谢综合征的多个方面,包括胰岛素抵抗、腹部肥胖、血脂异常和高血压,提供全面的代谢健康方案。
肝脏疾病
NAD+ 对肝脏功能和解毒过程至关重要,对非酒精性脂肪肝(NAFLD)及肝硬化等肝脏疾病的预防与治疗具有重要作用。
降解与颜色变化
一个常见误解是,NAD(烟酰胺腺嘌呤二核苷酸)出现微黄色就表示降解或质量不佳。然而,科学证据和行业标准并不支持这一说法。NAD+(氧化型)的真正降解通常由长时间暴露于热、光或湿气引起。轻微的黄色并不必然意味着降解。

浏览研究
Alano CC, Garnier P, Ying W, Higashi Y, Kauppinen TM, and Swanson RA. NAD+ depletion is necessary and sufficient for poly(ADP-ribose) polymerase-1-mediated neuronal death. J Neurosci 30: 2967–2978, 2010 [ PMC free article] [ PubMed] [ Google Scholar]
Benfeitas R, Uhlen M, Nielsen J, and Mardinoglu A. New challenges to study heterogeneity in cancer redox metabolism. Front Cell Dev Biol 5: 65, 2017 [ PMC free article] [ PubMed] [ Google Scholar]
Braidy N, Guillemin G, and Grant R. Promotion of cellular NAD(+) anabolism: therapeutic potential for oxidative stress in ageing and Alzheimer's disease. Neurotox Res 13: 173–184, 2008 [ PubMed] [ Google Scholar]
Braidy N, Poljak A, Grant R, Jayasena T, Mansour H, Chan-Ling T, Guillemin GJ, Smythe G, and Sachdev P. Mapping NAD(+) metabolism in the brain of ageing Wistar rats: potential targets for influencing brain senescence. Biogerontology 15: 177–198, 2014 [ PubMed] [ Google Scholar]
Godoy JA, Rios JA, Zolezzi JM, Braidy N, and Inestrosa NC. Signalling pathway cross talk in Alzheimer's disease. Cell Commun Signal 12: 23, 2014 [ PMC free article] [ PubMed] [ Google Scholar]
Godoy JA, Zolezzi JM, Braidy N, and Inestrosa NC. Role of Sirt1 during the ageing process: relevance to protection of synapses in the brain. Mol Neurobiol 50: 744–756, 2014 [ PubMed] [ Google Scholar]
Marohnic CC, Bewley MC, and Barber MJ. Engineering and characterization of a NADPH-utilizing cytochrome b5 reductase. Biochemistry 42: 11170–11182, 2003 [ PubMed] [ Google Scholar]
Massudi H, Grant R, Guillemin GJ, and Braidy N. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep 17: 28–46, 2012 [ PMC free article] [ PubMed] [ Google Scholar]
Spaans SK, Weusthuis RA, van der Oost J, and Kengen SW. NADPH-generating systems in bacteria and archaea. Front Microbiol 6: 742, 2015 [ PMC free article] [ PubMed] [ Google Scholar]
Tang KS, Suh SW, Alano CC, Shao Z, Hunt WT, Swanson RA, and Anderson CM. Astrocytic poly(ADP-ribose) polymerase-1 activation leads to bioenergetic depletion and inhibition of glutamate uptake capacity. Glia 58: 446–457, 2010 [ PubMed] [ Google Scholar]
Tao R, Kim SH, Honbo N, Karliner JS, and Alano CC. Minocycline protects cardiac myocytes against simulated ischemia-reperfusion injury by inhibiting poly(ADP-ribose) polymerase-1. J Cardiovasc Pharmacol 56: 659–668, 2010 [ PMC free article] [ PubMed] [ Google Scholar]
Warburg O. and Christian W. Pyridine, the hydrogen transferring element of fermentation enzymes (Pyridine-nucleotide.). Biochemische Zeitschrift 287: 291–328, 1936 [ Google Scholar]
Yin F, Boveris A, and Cadenas E. Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal 20: 353–371, 2014 [ PMC free article] [ PubMed] [ Google Scholar]
Zeng J, Libien J, Shaik F, Wolk J, and Hernandez AI. Nucleolar PARP-1 expression is decreased in Alzheimer's disease: consequences for epigenetic regulation of rDNA and cognition. Neural Plast 2016: 8987928, 2016 [ PMC free article] [ PubMed] [ Google Scholar]
Abeti R. and Duchen MR. Activation of PARP by oxidative stress induced by beta-amyloid: implications for Alzheimer's disease. Neurochem Res 37: 2589–2596, 2012 [ PubMed] [ Google Scholar]
Balu M, Mazhar A, Hayakawa CK, Mittal R, Krasieva TB, Konig K, Venugopalan V, and Tromberg BJ. In vivo multiphoton NADH fluorescence reveals depth-dependent keratinocyte metabolism in human skin. Biophys J 104: 258–267, 2013 [ PMC free article] [ PubMed] [ Google Scholar]
Braidy N, Grant R, Adams S, and Guillemin GJ. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J 277: 368–382, 2010 [ PubMed] [ Google Scholar]
Busso N, Karababa M, Nobile M, Rolaz A, Van Gool F, Galli M, Leo O, So A, and De Smedt T. Pharmacological inhibition of nicotinamide phosphoribosyltransferase/visfatin enzymatic activity identifies a new inflammatory pathway linked to NAD. PLoS One 3: e2267, 2008 [ PMC free article] [ PubMed] [ Google Scholar]
Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez-Marcos PJ, Yamamoto H, Andreux PA, Cettour-Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, and Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high-fat diet-induced obesity. Cell Metab 15: 838–847, 2012 [ PMC free article] [ PubMed] [ Google Scholar]
Diamond MP, Fletcher NM, Neubauer BR, Saed MG, H M AS, and Saed GM. Hypoxia-induced genotype switch in nicotinamide adenine dinucleotide phosphate (NADPH) oxidase through the up-regulation of cytidine deaminase regulates postoperative adhesion development. J Minim Invasive Gynecol 22: S159, 2015 [ PubMed] [ Google Scholar]
Gensler HL. Prevention of photoimmunosuppression and photocarcinogenesis by topical nicotinamide. Nutr Cancer 29: 157–162, 1997 [ PubMed] [ Google Scholar]
Grant RS. and Kapoor V. Murine glial cells regenerate NAD, after peroxide-induced depletion, using either nicotinic acid, nicotinamide, or quinolinic acid as substrates. J Neurochem 70: 1759–1763, 1998 [ PubMed] [ Google Scholar]
Guyton JR. Niacin in cardiovascular prevention: mechanisms, efficacy, and safety. Curr Opin Lipidol 18: 415–420, 2007 [ PubMed] [ Google Scholar]
Hershberger KA, Martin AS, and Hirschey MD. Role of NAD(+) and mitochondrial sirtuins in cardiac and renal diseases. Nat Rev Nephrol 13: 213–225, 2017 [ PMC free article] [ PubMed] [ Google Scholar]
Lehmann S, Costa AC, Celardo I, Loh SH, and Martins LM. PARP mutations protect against mitochondrial dysfunction and neurodegeneration in a PARKIN model of Parkinson's disease. Cell Death Dis 7: e2166, 2016 [ PMC free article] [ PubMed] [ Google Scholar]
Martire S, Fuso A, Mosca L, Forte E, Correani V, Fontana M, Scarpa S, Maras B, and d'Erme M. Bioenergetic impairment in animal and cellular models of Alzheimer's disease: PARP-1 inhibition rescues metabolic dysfunctions. J Alzheimers Dis 54: 307–324, 2016 [ PubMed] [ Google Scholar]
Martire S, Mosca L, and d'Erme M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer's and Parkinson's diseases. Mech Ageing Dev 146–148: 53–64, 2015 [ PubMed] [ Google Scholar]
Oblong JE. The evolving role of the NAD+/nicotinamide metabolome in skin homeostasis, cellular bioenergetics, and aging. DNA Repair (Amst) 23: 59–63, 2014 [ PubMed] [ Google Scholar]
Shetty PK, Galeffi F, and Turner DA. Nicotinamide pre-therapy ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia. Neurobiol Dis 62: 469–478, 2014 [ PMC free article] [ PubMed] [ Google Scholar]
Shi H, Sun N, Mayevsky A, Zhang Z, and Luo Q. Preclinical evidence of mitochondrial nicotinamide adenine dinucleotide as an effective alarm parameter under hypoxia. J Biomed Opt 19: 17005, 2014 [ PubMed] [ Google Scholar]
Soudijn W, van Wijngaarden I, and Ijzerman AP. Nicotinic acid receptor subtypes and their ligands. Med Res Rev 27: 417–433, 2007 [ PubMed] [ Google Scholar]
Surjana D, Halliday GM, Martin AJ, Moloney FJ, and Damian DL. Oral nicotinamide reduces actinic keratoses in phase II double-blinded randomized controlled trials. J Invest Dermatol 132: 1497–1500, 2012 [ PubMed] [ Google Scholar]
Tanno O, Ota Y, Kitamura N, Katsube T, and Inoue S. Nicotinamide increases biosynthesis of ceramides as well as other stratum corneum lipids to improve the epidermal permeability barrier. Br J Dermatol 143: 524–531, 2000 [ PubMed] [ Google Scholar]
Tong DL, Zhang DX, Xiang F, Teng M, Jiang XP, Hou JM, Zhang Q, and Huang YS. Nicotinamide pretherapy protects cardiomyocytes against hypoxia-induced cell death by improving mitochondrial stress. Pharmacology 90: 11–18, 2012 [ PubMed] [ Google Scholar]
Turunc Bayrakdar E, Uyanikgil Y, Kanit L, Koylu E, and Yalcin A. Nicotinamide therapy reduces the levels of oxidative stress, apoptosis, and PARP-1 activity in Abeta(1–42)-induced rat model of Alzheimer's disease. Free Radic Res 48: 146–158, 2014 [ PubMed] [ Google Scholar]
Vaccari CS, Nagamia S, Thoenes M, Oguchi A, Hammoud R, and Khan BV. Efficacy of controlled-release niacin in therapy of metabolic syndrome: correlation to surrogate markers of atherosclerosis, vascular reactivity, and inflammation. J Clin Lipidol 1: 605–613, 2007 [ PubMed] [ Google Scholar]
Wang H, Liang X, Luo G, Ding M, and Liang Q. Protection effect of nicotinamide on cardiomyoblast hypoxia/re-oxygenation injury: study of cellular mitochondrial metabolism. Mol Biosyst 12: 2257–2264, 2016 [ PubMed] [ Google Scholar]
Wang P, Du H, Zhang RY, Guan YF, Xu TY, Xu QY, Su DF, and Miao CY. Circulating and local visfatin/Nampt/PBEF levels in spontaneously hypertensive rats, stroke-prone spontaneously hypertensive rats and Wistar-Kyoto rats. J Physiol Sci 60: 317–324, 2010 [ PubMed] [ Google Scholar]
Wang P. and Miao CY. NAMPT as a therapeutic target against stroke. Trends Pharmacol Sci 36: 891–905, 2015 [ PubMed] [ Google Scholar]
Wang X, Hu X, Yang Y, Takata T, and Sakurai T. Nicotinamide mononucleotide protects against beta-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res 1643: 1–9, 2016 [ PubMed] [ Google Scholar]
Wei CC, Kong YY, Li GQ, Guan YF, Wang P, and Miao CY. Nicotinamide mononucleotide attenuates brain injury after intracerebral hemorrhage by activating Nrf2/HO-1 signaling pathway. Sci Rep 7: 717, 2017 [ PMC free article] [ PubMed] [ Google Scholar]
常见问题
快速获取关于我们 NAD+ 产品的常见问题解答。
经 CE 认证的一次性自动注射器,通过高精度弹簧机构输送 25mg–100mg 超纯 NAD+。
- 仅在 MHRA、NHS、GMP 认可的工厂生产 NAD+
- 包括防篡改和防伪功能
- 99.9% 纯度、三重过滤、全面安全认证
是的——我们的注射笔和溶液均经过医学认证。请务必遵循说明,并在使用前咨询您的临床医生。
使用自然发酵、酶法纯化的原料在无菌制药条件下并经过第三方测试。
是的。我们的 NAD+ 是全球范围内合法注册的配方,以及NADSQX Pen 已通过 CE 认证。
每支笔包含:
- 序列化跟踪
- 批次特定分析证书
- 外部安全验证
- 防篡改包装

